If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x-34=0
a = 1; b = -16; c = -34;
Δ = b2-4ac
Δ = -162-4·1·(-34)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-14\sqrt{2}}{2*1}=\frac{16-14\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+14\sqrt{2}}{2*1}=\frac{16+14\sqrt{2}}{2} $
| 48=20x+8 | | A=(5y-4)²-36. | | 11(9+d)=45 | | 2x/9=8/3 | | 4(5w+6)=8(w+3) | | x^2-6x-179=0 | | 15z/3-3z=6 | | 2x-13=31-9x | | x^2-6x-179=0* | | 6/z–8=2 | | Y=-x³ | | 3x+2x+3x=120 | | 8x-17=9x+4 | | 60x^3-60x^2=0/ | | 10(s-5)=-138 | | -4xx=320 | | 3(3w+9)/2=1 | | (X3-125)/(x-5)=8x+35 | | 7(x+5)+2(2x+2)=6 | | 2z-10=58 | | 3+2x+3x=120 | | (3+4)²=+9x2 | | c-64/7=3 | | x-1+2x=10x+2 | | 4a+5=85 | | 40=r/5+33 | | 2(5z+5)=3(3z+6) | | (1/4x)+7=(2x)-3 | | 23-2m=11 | | 8x-12=6x+2= | | 2(4x-1)=x+7 | | y+18/8=6 |